Overview

1. Why first-order model counting?
2. Why first-order model counters?
3. What first-order circuit languages?
4. How first-order knowledge compilation?
5. Perspectives …
Why do we need first-order model counting?
Uncertainty in AI

Probability Distribution

= Qualitative + Quantitative
Probabilistic Graphical Models

Probability Distribution = Graph Structure + Parameterization
Probabilistic Graphical Models

Probability Distribution

= Graph Structure

+ Parameterization
Weighted Model Counting

Probability Distribution = SAT Formula + Weights

[Chavira 2008, Sang 2005]
Weighted Model Counting

Probability Distribution

= SAT Formula

+ Weights

Rain \Rightarrow \text{Cloudy}

\text{Sun} \land \text{Rain} \Rightarrow \text{Rainbow}

+

w(\text{Rain})=1

w(\neg\text{Rain})=2

w(\text{Cloudy})=3

w(\neg\text{Cloudy})=5

\ldots

[Chavira 2008, Sang 2005]
Beyond NP Pipeline for \#P

Bayesian networks

Factor graphs

Probabilistic logic programs

Markov Logic

Relational Bayesian networks

Probabilistic databases

Weighted Model Counting

Generalized Perspective

Probability Distribution

= Logic

+ Weights
Generalized Perspective

Probability Distribution

\[= \text{Logic} + \text{Weights} \]

Logical Syntax Model-theoretic Semantics

\[+ \text{Weight function } w(.) \]

\[\text{Factorized } \Pr(\text{model}) \propto \Pi_i w(x_i) \]
First-Order Model Counting

Probability Distribution = First-Order Logic + Weights

[Van den Broeck 2011, 2013, Gogate 2011]
First-Order Model Counting

\[
\text{Probability Distribution} = \text{First-Order Logic} + \text{Weights}
\]

\[
\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y)
\]

\[
\begin{align*}
w(\text{Smokes}(a)) &= 1 \\
 w(\neg \text{Smokes}(a)) &= 2 \\
 w(\text{Smokes}(b)) &= 1 \\
 w(\neg \text{Smokes}(b)) &= 2 \\
 w(\text{Friends}(a,b)) &= 3 \\
 w(\neg \text{Friends}(a,b)) &= 5 \\
\ldots
\end{align*}
\]

[Van den Broeck 2011, 2013, Gogate 2011]
Probabilistic Programming

Probability Distribution = Logic Programs + Weights

[Fierens 2015]
Probabilistic Programming

Probability Distribution = Logic Programs + Weights

path(X,Y) :-
 edge(X,Y).
path(X,Y) :-
 edge(X,Z), path(Z,Y).

[Fierens 2015]
Weighted Model Integration

Probability Distribution

\[\text{Probability Distribution} = \text{SMT(LRA)} + \text{Weights} \]
Weighted Model Integration

Probability Distribution
\[\text{SMT(LRA)} \]

Weights

\[\begin{align*}
0 & \leq \text{height} \leq 200 \\
0 & \leq \text{weight} \leq 200 \\
0 & \leq \text{age} \leq 100 \\
\text{age} < 1 & \Rightarrow \\
& \text{height} + \text{weight} \leq 90 \\
\end{align*} \]

\[\begin{align*}
\text{w(} \text{height} \text{)} &= \text{height} - 10 \\
\text{w(} \neg \text{height} \text{)} &= 3 \times \text{height}^2 \\
\text{w(} \neg \text{weight} \text{)} &= 5 \\
& \ldots
\end{align*} \]

[Belle 2015]
Beyond NP Pipeline for \(\#P/\#P_1 \)

- Parfactor graphs
- Probabilistic logic programs
- Markov Logic
- Relational Bayesian networks
- Probabilistic databases

First-Order Model Counting

Model = solution to *first-order* logic formula Δ

$\Delta = \forall d \ (\text{Rain}(d) \Rightarrow \text{Cloudy}(d))$

Days = \{Monday\}
First-Order Model Counting

Model = solution to **first-order** logic formula \(\Delta \)

\[
\Delta = \forall d \ (\text{Rain}(d) \implies \text{Cloudy}(d))
\]

Days = \{Monday\}

<table>
<thead>
<tr>
<th>Rain(M)</th>
<th>Cloudy(M)</th>
<th>Model?</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\[
\text{FOMC} = 3
\]
Weighted First-Order Model Counting

Model = solution to **first-order** logic formula Δ

$$\Delta = \forall d \ (\text{Rain}(d) \Rightarrow \text{Cloudy}(d))$$

Days = \{Monday, Tuesday\}

<table>
<thead>
<tr>
<th>Rain(M)</th>
<th>Cloudy(M)</th>
<th>Rain(T)</th>
<th>Cloudy(T)</th>
<th>Model?</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta = \forall d \ (\text{Rain}(d) \Rightarrow \text{Cloudy}(d))$

Days = \{Monday, Tuesday\}

<table>
<thead>
<tr>
<th>Rain(M)</th>
<th>Cloudy(M)</th>
<th>Rain(T)</th>
<th>Cloudy(T)</th>
<th>Model?</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
</tbody>
</table>

$\#\text{SAT} = 9$
Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta = \forall d \ (\text{Rain}(d) \Rightarrow \text{Cloudy}(d))$

Days = \{Monday, Tuesday\}

$w(\text{R})=1$
$w(\neg\text{R})=2$
$w(\text{C})=3$
$w(\neg\text{C})=5$

<table>
<thead>
<tr>
<th>Rain(M)</th>
<th>Cloudy(M)</th>
<th>Rain(T)</th>
<th>Cloudy(T)</th>
<th>Model?</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
<td>$1 \times 1 \times 3 \times 3 = 9$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
<td>$2 \times 1 \times 3 \times 3 = 18$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
<td>$2 \times 1 \times 5 \times 3 = 30$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
<td>$1 \times 2 \times 3 \times 3 = 18$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
<td>$2 \times 2 \times 3 \times 3 = 36$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
<td>$2 \times 2 \times 5 \times 3 = 60$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
<td>$1 \times 2 \times 3 \times 5 = 30$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
<td>$2 \times 2 \times 3 \times 5 = 60$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
<td>$2 \times 2 \times 5 \times 5 = 100$</td>
</tr>
</tbody>
</table>

$\#\text{SAT} = 9$
Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta = \forall d \ (\text{Rain}(d) \implies \text{Cloudy}(d))$

Days = {Monday, Tuesday}

<table>
<thead>
<tr>
<th>Rain(M)</th>
<th>Cloudy(M)</th>
<th>Rain(T)</th>
<th>Cloudy(T)</th>
<th>Model?</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
<td>$1 \times 1 \times 3 \times 3 = 9$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>No</td>
<td>$2 \times 1 \times 3 \times 3 = 18$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
<td>$2 \times 1 \times 5 \times 3 = 30$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>No</td>
<td>$1 \times 2 \times 3 \times 3 = 18$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>No</td>
<td>$2 \times 2 \times 3 \times 3 = 36$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
<td>$2 \times 2 \times 5 \times 3 = 60$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
<td>$1 \times 2 \times 3 \times 5 = 30$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
<td>$2 \times 2 \times 3 \times 5 = 60$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>No</td>
<td>$2 \times 2 \times 5 \times 5 = 100$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

$\#\text{SAT} = 9$

WFOMC = 361
Why do we need first-order model counters?
A Simple Reasoning Problem

- 52 playing cards
- Let us ask some simple questions

[Van den Broeck 2015]
A Simple Reasoning Problem

Probability that Card1 is Hearts?
A Simple Reasoning Problem

Probability that Card1 is Hearts? \[\frac{1}{4} \]

[Van den Broeck 2015]
A Simple Reasoning Problem

Probability that Card1 is Hearts given that Card1 is red?

[Van den Broeck 2015]
A Simple Reasoning Problem

Probability that Card1 is Hearts given that Card1 is red? 1/2

[Van den Broeck 2015]
A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

[Van den Broeck 2015]
A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH? 13/51

[Van den Broeck 2015]
A Simple Reasoning Problem

?️

Probability that Card1 is Hearts?
A Simple Reasoning Problem

Probability that Card1 is Hearts? 1/4

[Van den Broeck 2015]
A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

[Van den Broeck 2015]
A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

13/51

[Van den Broeck 2015]
Model distribution by FOMC:

\[\Delta = \neg \forall p, \exists c, \text{Card}(p,c) \wedge \forall c, \exists p, \text{Card}(p,c) \wedge \forall p, \forall c, \forall c', \text{Card}(p,c) \wedge \text{Card}(p,c') \Rightarrow c = c' \]

[Van den Broeck 2015]
Beyond NP Pipeline for #P

Reduce to propositional model counting:

[Van den Broeck 2015]
Beyond NP Pipeline for #P

Reduce to propositional model counting:

\[\Delta = \text{Card}(A\heartsuit,p_1) \lor \ldots \lor \text{Card}(2\spadesuit,p_1) \]
\[\quad \text{Card}(A\heartsuit,p_2) \lor \ldots \lor \text{Card}(2\spadesuit,p_2) \]
\[\quad \ldots \]
\[\text{Card}(A\heartsuit,p_1) \lor \ldots \lor \text{Card}(A\heartsuit,p_{52}) \]
\[\quad \text{Card}(K\heartsuit,p_1) \lor \ldots \lor \text{Card}(K\heartsuit,p_{52}) \]
\[\quad \ldots \]
\[\neg \text{Card}(A\heartsuit,p_1) \lor \neg \text{Card}(A\heartsuit,p_2) \]
\[\quad \neg \text{Card}(A\heartsuit,p_1) \lor \neg \text{Card}(A\heartsuit,p_3) \]
\[\quad \ldots \]

[Van den Broeck 2015]
Beyond NP Pipeline for #P

Reduce to propositional model counting:

$$\Delta = \text{Card}(A\heartsuit, p_1) \lor \ldots \lor \text{Card}(2\spadesuit, p_1)$$
$$\text{Card}(A\heartsuit, p_2) \lor \ldots \lor \text{Card}(2\spadesuit, p_2)$$
$$\ldots$$
$$\text{Card}(A\heartsuit, p_1) \lor \ldots \lor \text{Card}(A\heartsuit, p_{52})$$
$$\text{Card}(K\heartsuit, p_1) \lor \ldots \lor \text{Card}(K\heartsuit, p_{52})$$
$$\ldots$$
$$\neg \text{Card}(A\heartsuit, p_1) \lor \neg \text{Card}(A\heartsuit, p_2)$$
$$\neg \text{Card}(A\heartsuit, p_1) \lor \neg \text{Card}(A\heartsuit, p_3)$$
$$\ldots$$

What will happen?

[Van den Broeck 2015]
Deck of Cards Graphically

[Van den Broeck 2015]
Deck of Cards Graphically

Card(K♥, p₅₂)
Deck of Cards Graphically

A♥ 2♥ 3♥ ... K♥

One model/perfect matching

[Van den Broeck 2015]
Deck of Cards Graphically

[Van den Broeck 2015]
Deck of Cards Graphically

Card(K♥, p_{52})
Deck of Cards Graphically

![Diagram of a deck of cards with model counting question]

Model counting: How many \textit{perfect} matchings?

\[\text{Card(K♥, p_{52})} \]

[Van den Broeck 2015]
Deck of Cards Graphically

[Van den Broeck 2015]
Deck of Cards Graphically

What if I add the unit clause \(\neg \text{Card(K♥,p_{52})} \) to my CNF?

[Van den Broeck 2015]
Deck of Cards Graphically

What if I add the unit clause \(\neg \text{Card}(K\heartsuit, p_{52}) \) to my CNF?

[Van den Broeck 2015]
What if I add unit clauses to my CNF?

[Van den Broeck 2015]
Observations

- Deck of cards = complete bigraph
- Unit clause removes edge
 Encode any bigraph

- Counting models = perfect matchings
- Problem is \#P-complete! 😞

- All solvers efficiently handle unit clauses
- No solver can do cards problem efficiently!

[Van den Broeck 2015]
What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

[Van den Broeck 2015]
What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH? 13/51

[Van den Broeck 2015]
Probability that Card52 is Spades given that Card2 is QH?

[Van den Broeck 2015]
What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH? 13/51

[Van den Broeck 2015]
What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?
What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH? 13/51

[Van den Broeck 2015]
What's going on here?
Which property makes reasoning tractable?

[Niepert 2014, Van den Broeck 2015]
Tractable Reasoning

What's going on here?
Which property makes reasoning tractable?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

[Niepert 2014, Van den Broeck 2015]
What are first-order circuit languages?
Negation Normal Form

[Darwiche 2002]
Decomposable NNF

[Darwiche 2002]
Deterministic Decomposable NNF

[Darwiche 2002]
Deterministic Decomposable NNF

Weighted Model Counting

[Darwiche 2002]
Deterministic Decomposable NNF

Weighted Model Counting and much more!

[Darwiche 2002]
First-Order NNF

\[\forall X, X \in \text{People} : \text{belgian}(X) \Rightarrow \text{likes}(X, \text{chocolate}) \]
First-Order Decomposability

\[\forall X, X \in \text{People} : \text{belgian}(X) \Rightarrow \text{likes}(X, \text{chocolate}) \]
First-Order Decomposability

\(\forall X, X \in \text{People} : \text{belgian}(X) \Rightarrow \text{likes}(X, \text{chocolate}) \)

[Van den Broeck 2013]
First-Order Determinism

∀X, X ∈ People : belgian(X) ⇒ likes(X, chocolate)

[Van den Broeck 2013]
Deterministic Decomposable FO NNF

\[\forall X, X \in \text{People} : \text{belgian}(X) \Rightarrow \text{likes}(X, \text{chocolate}) \]

Weighted Model Counting

[Van den Broeck 2013]
Deterministic Decomposable FO NNF

∀X, X ∈ People : belgian(X) ⇒ likes(X, chocolate)

Weighted Model Counting

Pr(belgian) x Pr(likes) + Pr(¬belgian)

[Van den Broeck 2013]
Deterministic Decomposable FO NNF

$$\forall X, X \in \text{People} : \text{belgian}(X) \Rightarrow \text{likes}(X, \text{chocolate})$$

Weighted Model Counting

$$|\text{People}|
\left(\Pr(\text{belgian}) \times \Pr(\text{likes}) + \Pr(\neg\text{belgian}) \right)$$

[Van den Broeck 2013]
How to do first-order knowledge compilation?
Deterministic Decomposable FO NNF

$\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y))$
Deterministic Decomposable FO NNF

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]
Deterministic Decomposable FO NNF

$\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y))$
Deterministic Decomposable FO NNF

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y)) \]
Deterministic Decomposable FO NNF

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

[Van den Broeck 2013]
Deterministic Decomposable FO NNF

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

[Van den Broeck 2013]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y)) \]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

Database:

- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...

[Van den Broeck 2015]
First-Order Model Counting: Example

$$\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y))$$

- If we know D precisely: who smokes, and there are k smokers?

Database:
- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...

[Van den Broeck 2015]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

Database:
- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...

[Van den Broeck 2015]
First-Order Model Counting: Example

$$\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y))$$

- If we know D precisely: who smokes, and there are k smokers?

Database:
- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...
First-Order Model Counting: Example

$$\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y))$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

<table>
<thead>
<tr>
<th>Name</th>
<th>Smokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>0</td>
</tr>
<tr>
<td>Charlie</td>
<td>0</td>
</tr>
<tr>
<td>Dave</td>
<td>1</td>
</tr>
<tr>
<td>Eve</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

[Van den Broeck 2015]
First-Order Model Counting: Example

$$\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y))$$

- If we know D precisely: who smokes, and there are k smokers?

Database:
- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

Database:

- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...

[Van den Broeck 2015]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

Database:
- \(\text{Smokes}(\text{Alice}) = 1 \)
- \(\text{Smokes}(\text{Bob}) = 0 \)
- \(\text{Smokes}(\text{Charlie}) = 0 \)
- \(\text{Smokes}(\text{Dave}) = 1 \)
- \(\text{Smokes}(\text{Eve}) = 0 \)
- ...

[Van den Broeck 2015]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

Database:
- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...

[Van den Broeck 2015]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

Database:
- Smokes(Alice) = 1
- Smokes(Bob) = 0
- Smokes(Charlie) = 0
- Smokes(Dave) = 1
- Smokes(Eve) = 0
- ...

\[\rightarrow 2^{n^2 - k(n-k)} \text{ models} \]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

\[\text{Database:} \]
\begin{align*}
\text{Smokes(Alice)} &= 1 \\
\text{Smokes(Bob)} &= 0 \\
\text{Smokes(Charlie)} &= 0 \\
\text{Smokes(Dave)} &= 1 \\
\text{Smokes(Eve)} &= 0 \\
\vdots \\
\text{Models:} \quad 2^{n^2 - k(n - k)}
\end{align*}

- If we know that there are \(k \) smokers?
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x,y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

 \[
 \text{Database:} \\
 \begin{align*}
 \text{Smokes}(Alice) &= 1 \\
 \text{Smokes}(Bob) &= 0 \\
 \text{Smokes}(Charlie) &= 0 \\
 \text{Smokes}(Dave) &= 1 \\
 \text{Smokes}(Eve) &= 0 \\
 \ldots
 \end{align*}
 \]

 \[2^{n^2 - k(n-k)} \] models

- If we know that there are \(k \) smokers?

 \[\left(\begin{array}{c} n \\ k \end{array} \right) 2^{n^2 - k(n-k)} \] models

[Van den Broeck 2015]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \text{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

 \[\text{Database:} \]

 Smokes(Alice) = 1
 Smokes(Bob) = 0
 Smokes(Charlie) = 0
 Smokes(Dave) = 1
 Smokes(Eve) = 0
 ...

 \[\rightarrow 2^{n^2 - k(n-k)} \text{ models} \]

- If we know that there are \(k \) smokers?

 \[\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)} \text{ models} \]

- In total...

[Van den Broeck 2015]
First-Order Model Counting: Example

\[\Delta = \forall x, y \in \textbf{People}, (\text{Smokes}(x) \land \text{Friends}(x, y) \Rightarrow \text{Smokes}(y)) \]

- If we know \(D \) precisely: who smokes, and there are \(k \) smokers?

 - If we know that there are \(k \) smokers?
 - Database:
 - Smokes(Alice) = 1
 - Smokes(Bob) = 0
 - Smokes(Charlie) = 0
 - Smokes(Dave) = 1
 - Smokes(Eve) = 0

 \[\rightarrow 2^{n^2 - k(n-k)} \] models

- If we know that there are \(k \) smokers?

 \[\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)} \] models

- In total...

 \[\rightarrow \sum_{k=0}^{n} \binom{n}{k} 2^{n^2 - k(n-k)} \] models

[Van den Broeck 2015]
Compilation Rules

• Standard rules
 – Shannon decomposition (DPLL)
 – Detect decomposability
 – Etc.

• FO Shannon decomposition:

[Van den Broeck 2013]
Playing Cards Revisited

Let us automate this:

\[\forall p, \exists c, \text{Card}(p,c) \]
\[\forall c, \exists p, \text{Card}(p,c) \]
\[\forall p, \forall c, \forall c', \text{Card}(p,c) \land \text{Card}(p,c') \Rightarrow c = c' \]

[Van den Broeck 2015]
Playing Cards Revisited

Let us automate this:

\[\forall p, \exists c, \text{Card}(p, c) \]
\[\forall c, \exists p, \text{Card}(p, c) \]
\[\forall p, \forall c, \forall c', \text{Card}(p, c) \land \text{Card}(p, c') \Rightarrow c = c' \]

\[\#\text{SAT} = \sum_{k=0}^{n} \binom{n}{k} \sum_{l=0}^{n} \binom{n}{l} (l + 1)^k (-1)^{2n-k-l} = n! \]

[Van den Broeck 2015]
Playing Cards Revisited

Let us automate this:

\[\forall p, \exists c, \text{Card}(p,c) \]
\[\forall c, \exists p, \text{Card}(p,c) \]
\[\forall p, \forall c, \forall c', \text{Card}(p,c) \land \text{Card}(p,c') \Rightarrow c = c' \]

\[\#\text{SAT} = \sum_{k=0}^{n} \binom{n}{k} \sum_{l=0}^{n} \binom{n}{l} (l + 1)^k (-1)^{2n-k-l} = n! \]

Computed in time polynomial in n

[Van den Broeck 2015]
Perspectives...
What I did not talk about… in KC

• Other queries and transformations
 (see Dan Olteanu poster)
• Other KC languages
 (FO-AODD)
• KC for logic programs
 (see Vlasselaer poster)

[Gogate 2010, Vlasselaer 2015]
What I did not talk about…in FOMC

• WFOMC for probabilistic databases
 (see Gribkoff poster)
• WFOMC for probabilistic programs
 (see Vlasselaer poster)
• Complexity theory (data or domain)
 – PTime domain complexity for 2-var fragment
 – $\#P_1$ domain complexity for some 3-var CNFs

What I did not talk about... in FO

- Very related problems
 - Lifted inference in SRL
- Very related applications
 - Approximate lifted inference in Markov Logic
 - Learn Markov logic networks
- Classical first-order reasoning
 - Answer set programming,
 - SMT,
 - Theorem proving

[Kersting 2011]
Format for First-Order BeyondNP

- DIMACS contributed to SAT success
- Goals
 - Trivial to parse
 - Captures MLNs, Prob. Programs, Prob. DBs
 - *Not* a powerful representation language
- FO-CNF format under construction
- Vibhav?

```
p fo-cnf 2 1
d people 1000
r Friends(people,people)
r Smokes(people)
-Smokes(x) -Friends(x,y) Smokes(y)
w Friends 3.5 1.2
w Smokes -0.5 4
```
Calendar

At IJCAI in New York on July 9-11

• StarAI 2016 (http://www.starai.org/2016/)
 Sixth International Workshop on Statistical Relational AI

• IJCAI Tutorial
 “Lifted Probabilistic Inference in Relational Models” with Dan Suciu
Conclusions

• FOMC is BeyondNP reduction target
• Existing solvers inadequate
 Exponential speedups from FO solvers
• FOKC is Elegant, more than FOMC
• Intersection of communities
 – Statistical relational learning (lifted inference)
 – Probabilistic databases
 – Automated reasoning (you!)
References

References

